2.1.5.8 Electric Power

DOE estimates that under the on-site disposal alternative, the existing electrical service at the Moab site would be required to support an estimated maximum demand of 600 kilovolt-amperes (kVA). The primary demands for this power would be:

- Conversion of the mill building to a vehicle/equipment maintenance shop.
- Field office trailers.
- Office and parking lot security lighting.
- River pump station.
- Decontamination water sprays and recycle pumps.

2.2 Off-Site Disposal Alternative

The off-site disposal alternative would entail excavating and relocating the entire Moab site tailings pile, other contaminated on-site material, and all contaminated material from vicinity properties to one of three alternative off-site disposal cells that would be constructed specifically as a permanent repository for these materials. The three proposed off-site disposal alternatives DOE is evaluating are Klondike Flats and Crescent Junction, which are north of the Moab site, and the White Mesa Mill site to the south. Figure 2–9 shows the Moab site and the three potential disposal sites. DOE is also evaluating three alternative modes of transportation to move the material to the off-site disposal cell: truck, rail, and slurry pipeline; however, as described further in Section 2.5.2, rail transport is not an option for the White Mesa Mill site. Contaminated material from vicinity properties would first be moved to the Moab site, then transported to the off-site disposal location. Contaminated ground water at the Moab site would also be remediated under the off-site disposal alternative as described in Section 2.3.

The major actions associated with implementing the off-site disposal alternative would be:

- Construction and operations at the Moab site (Section 2.2.1).
- Characterization and remediation of vicinity properties (Section 2.2.2).
- Construction and operations at the borrow areas (Section 2.2.3).
- Transportation of contaminated material from the Moab site to the off-site disposal location (Section 2.2.4).
- Construction and operations at the off-site disposal location (Section 2.2.5).
- Monitoring and maintenance of the off-site disposal cell (Section 2.2.6).
- Ground water remediation at the Moab site (Section 2.3).

Resource requirements for remediation activities are discussed in Section 2.2.7.

For the off-site disposal alternative, where pile consolidation time is not a factor, project completion dates under the truck and rail transportation options could be affected by work schedules. Consequently, for these two modes of transportation, DOE considered two work schedules. The single-shift schedule would be one 12-hour shift, 7:00 a.m. to 7:30 p.m., 50 weeks per year. The double-shift schedule would be two 10-hour shifts, 7:00 a.m. to 5:30 p.m. and 5:30 p.m. to 4:00 a.m., 50 weeks per year. These two schedules were considered to allow flexibility in targeting a project completion date. In this EIS, impacts are generally assessed assuming the more aggressive double-shift schedule is implemented. This was done to ensure that certain impacts unique to the double-shift were addressed. For example, night operations under a double shift could entail impacts to night sky vision, noise, and traffic that would not be considerations under a single-shift scenario. The NPS has expressed concern for these factors in relation to Arches National Park. The one difference in these schedules would be that for truck transportation the schedules would run 7 days per week, and for rail transportation the schedules would run only 6 days per week. This difference would be necessary to accommodate railroad requirements that stipulate 1 day per week be allowed for locomotive and track maintenance.

DOE considered only one schedule for the pipeline transportation option because once pumping operations began they would be in progress 24 hours a day. Processed slurry would be stockpiled, and the factor driving the schedule for project completion would be the diameter of the pipe rather than the number of workers excavating the pile. DOE selected the pipe diameter to allow for a schedule roughly the same as the rail and truck transportation single-shift work schedule that estimates project completion in 2012.

Figure 2–10, Figure 2–11, and Figure 2–12 illustrate the estimated schedules for completing the surface remediation activities for the off-site disposal alternative using the three transportation modes. As seen in the figures, the schedules would be similar for all three modes of transportation. Assuming that a ROD is issued in 2005 and that a single-shift work schedule is implemented for truck or rail transportation, remediation work would begin in late 2007 and would be completed in 2012 for all three modes of transportation, regardless of the off-site disposal cell location. This is similar to the schedule that would apply for the on-site disposal alternative if the more aggressive 1-year top slope cover construction schedule were used (see Figure 2–4). However, as shown in Figure 2–10 and Figure 2–11, use of a more aggressive double-shift work schedule for the truck or rail transportation modes would expedite completion of the surface remediation activities by approximately 2 years and result in completion of the surface remediation activities in late 2010 or early 2011. The 2-year schedule uncertainty for pile consolidation discussed in Section 2.1 for the on-site disposal alternative would not apply for the off-site disposal alternative.

2.2.1 Construction and Operations at the Moab Site

This section describes construction and operations at the Moab site under the off-site disposal alternative. Ground water remediation at the Moab site is discussed in Section 2.3. The following subsections address three elements: (1) site preparation, infrastructure enhancement, and control, (2) excavation and processing of tailings and other contaminated material, and (3) Moab site reclamation. Figure 2–13 is a Moab site plan illustrating the major site features and approximate locations of temporary on-site areas and facilities that would be used under the off-site disposal alternative.